Reference material for BIT_OR
Performs a bitwise OR
operation on an integer expression, ignoring null input values. Bitwise OR
compares two bits and returns 1
if either is 1
, and 0
otherwise.
Numbers are represented in two’s complement, a binary method for signed integers, as follows:
1
.0
indicates a positive number, while 1
indicates a negative number.Note: DISTINCT
has no effect on the function’s result.
Parameter | Description | Supported input types |
---|---|---|
<expression> | The expression used to compute the result. | INT , BIGINT |
The BIT_OR
function returns a result of either type INT
or BIGINT
, depending on the type of the input.
Example
The following code example performs a bitwise OR
operation across a series of integers ranging from 1
to 3
:
Returns
The previous code example returns 3
. In a 4-bit system, the binary representation of integers from 1
to 3
is:
1
->
0001
2
->
0010
3
->
0011
The bitwise OR
of 0001
and 0010
is 0011
, which equals 3
. The bitwise OR
between 0011
and itself is 0011
, or 3
.
Example
The following code example performs a bitwise OR
operation across a series of integers ranging from -1
to 1
:
Returns
The previous code example returns -1
. In a 4-bit system, the binary representation of integers from -1
to 1
is:
-1
->
1111
0
->
0000
1
->
0001
The bitwise OR
of 1111
and any integer is 1111
, or -1
.
Reference material for BIT_OR
Performs a bitwise OR
operation on an integer expression, ignoring null input values. Bitwise OR
compares two bits and returns 1
if either is 1
, and 0
otherwise.
Numbers are represented in two’s complement, a binary method for signed integers, as follows:
1
.0
indicates a positive number, while 1
indicates a negative number.Note: DISTINCT
has no effect on the function’s result.
Parameter | Description | Supported input types |
---|---|---|
<expression> | The expression used to compute the result. | INT , BIGINT |
The BIT_OR
function returns a result of either type INT
or BIGINT
, depending on the type of the input.
Example
The following code example performs a bitwise OR
operation across a series of integers ranging from 1
to 3
:
Returns
The previous code example returns 3
. In a 4-bit system, the binary representation of integers from 1
to 3
is:
1
->
0001
2
->
0010
3
->
0011
The bitwise OR
of 0001
and 0010
is 0011
, which equals 3
. The bitwise OR
between 0011
and itself is 0011
, or 3
.
Example
The following code example performs a bitwise OR
operation across a series of integers ranging from -1
to 1
:
Returns
The previous code example returns -1
. In a 4-bit system, the binary representation of integers from -1
to 1
is:
-1
->
1111
0
->
0000
1
->
0001
The bitwise OR
of 1111
and any integer is 1111
, or -1
.